Surface structure of Pd(111) with less than half a monolayer of Zn.

نویسندگان

  • J M MacLeod
  • J A Lipton-Duffin
  • A Baraldi
  • R Rosei
  • F Rosei
چکیده

We have characterized the structural properties of submonolayer amounts of Zn on Pd(111) using scanning tunneling microscopy (STM) and spot-profile analysis low energy electron diffraction (SPA-LEED). Following room temperature deposition of ≈0.06 monolayers (ML) Zn onto Pd(111), we observe the substitution of Zn for Pd in the surface layer. At ≈0.20 ML of deposited Zn, STM reveals a locally ordered phase with a (2/√3 × 2/√3)R30° unit cell located near Zn substitutions; SPA-LEED patterns reveal the same periodicity. We attribute this phase to the metastable bonding of atoms or clusters predominantly in hollow sites surrounding Zn substitutions in the surface layer. At ≈0.4 ML, STM images reveal local (√3 × √3)R30° and (2 × 1) ordering on surfaces annealed to 350 K. At coverages near 0.5 ML, both STM and SPA-LEED show the onset of the formation of the (2 × 1) ordering associated with the Zn : Pd 1 : 1 alloy phase. At all coverages, the surface is dominated by island growth; the islands' size and density is shown to depend critically on annealing at temperatures as low as 350 K. These results provide insight into the structural features of a Zn/Pd(111) coverage regime that has been much debated in recent years.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rsc_cp_c3cp54782e 3..9

We have performed a high-resolution synchrotron radiation photoelectron spectroscopy study of the initial growth stages of the ZnPd near-surface alloy on Pd(111), complemented by scanning tunnelling microscopy data. We show that the chemical environment for surfaces containing less than half of one monolayer of Zn is chemically distinct from subsequent layers. Surfaces where the deposition is p...

متن کامل

Thermal evolution of the submonolayer near-surface alloy of ZnPd on Pd(111).

We have performed a high-resolution synchrotron radiation photoelectron spectroscopy study of the initial growth stages of the ZnPd near-surface alloy on Pd(111), complemented by scanning tunnelling microscopy data. We show that the chemical environment for surfaces containing less than half of one monolayer of Zn is chemically distinct from subsequent layers. Surfaces where the deposition is p...

متن کامل

Agostic interactions and dissociation in the first layer of water on Pt(111).

Recent quantum mechanical (QM) calculations for a monolayer of H(2)O on Ru(0001) suggested a novel stable structure with half the waters dissociated. However, different studies on Pt(111) suggested an undissociated bilayer structure in which the outer half of the water has the OH bonds toward the surface rather than the O lone pair. Since water layers on Pt are important in many catalytic proce...

متن کامل

Improving electrocatalysts for O(2) reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd(3)Fe(111) single-crystal alloy.

We improved the effectiveness of Pt monolayer electrocatalysts for the oxygen-reduction reaction (ORR) using a novel approach to fine-tuning the Pt monolayer interaction with its support, exemplified by an annealed Pd(3)Fe(111) single-crystal alloy support having a segregated Pd layer. Low-energy ion scattering and low-energy electron diffraction studies revealed that a segregated Pd layer, wit...

متن کامل

Zinc coverage dependent structure of PdZn surface alloy.

Catalytic performances of alloy and surface alloy are sensitive to the surface structures and composition. In this paper we present an overall survey of the surface structure of Pd(111) covered with different amount of Zn using Monte Carlo simulations. We demonstrate that the composition of PdZn surface alloy is Zn coverage dependent: the surface concentration of Zn increases with the increase ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 30  شماره 

صفحات  -

تاریخ انتشار 2013